
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [National Centre for Animal Health]
On: 17 December 2010
Access details: Access Details: [subscription number 919558175]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Avian Pathology
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713405810

Shedding and serologic responses following primary and secondary
inoculation of house sparrows (Passer domesticus) and European starlings
(Sturnus vulgaris) with low-pathogenicity avian influenza virus
Nicole M. Nemetha; Nicholas O. Thomasa; Darcy S. Orahooda; Theodore D. Andersona; Paul T.
Oesterlea

a USDA/APHIS/WS/National Wildlife Research Center, Fort Collins, CO, USA

Online publication date: 15 October 2010

To cite this Article Nemeth, Nicole M. , Thomas, Nicholas O. , Orahood, Darcy S. , Anderson, Theodore D. and Oesterle,
Paul T.(2010) 'Shedding and serologic responses following primary and secondary inoculation of house sparrows (Passer
domesticus) and European starlings (Sturnus vulgaris) with low-pathogenicity avian influenza virus', Avian Pathology,
39: 5, 411 — 418
To link to this Article: DOI: 10.1080/03079457.2010.513043
URL: http://dx.doi.org/10.1080/03079457.2010.513043

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713405810
http://dx.doi.org/10.1080/03079457.2010.513043
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Shedding and serologic responses following primary
and secondary inoculation of house sparrows
(Passer domesticus) and European starlings (Sturnus
vulgaris) with low-pathogenicity avian influenza virus

Nicole M. Nemeth*, Nicholas O. Thomas, Darcy S. Orahood, Theodore D. Anderson and
Paul T. Oesterle

USDA/APHIS/WS/National Wildlife Research Center, 4101 Laporte Avenue, Fort Collins, CO 80521, USA

Waterfowl and shorebirds are well-recognized natural reservoirs of low-pathogenicity avian influenza viruses
(LPAIV); however, little is known about the role of passerines in avian influenza virus ecology. Passerines are
abundant, widespread, and commonly come into contact with free-ranging birds as well as captive game
birds and poultry. We inoculated and subsequently challenged house sparrows (Passer domesticus) and
European starlings (Sturnus vulgaris) with wild-bird origin LPAIV H3N8 to evaluate their potential role
in transmission. Oropharyngeal shedding was short lived, and was detected in more starlings (97.2%) than
sparrows (47.2%; n�36 of each). Cloacal shedding was rare in both species (8.3%; n�36 of each) and
no cage-mate transmission occurred. Infectious LPAIV was cultured from oropharyngeal and cloacal
swabs and gastrointestinal and respiratory tissues from both species. Seroconversion was detected as early as
3 days post inoculation (d.p.i.) (16.7% of sparrows and 0% of starlings; n�6 each); 50% of these individuals
seroconverted by 5 d.p.i., and nearly all birds (97%; n�35) seroconverted by 28 d.p.i. In general, pre-existing
homologous immunity led to reduced shedding and increased antibody levels within 7 days of challenge.
Limited shedding and lack of cage-mate transmission suggest that passerines are not significant reservoirs of
LPAIV, although species differences apparently exist. Passerines readily and consistently seroconverted to
LPAIV, and therefore inclusion of passerines in epidemiological studies of influenza outbreaks in wildlife
and domestic animals may provide further insight into the potential involvement of passerines in avian
influenza virus transmission ecology.

Introduction

Avian influenza viruses (AIV) (family Orthomyxoviridae,
genus Influenzavirus A) are an important cause of large-
scale economic losses in the poultry industry, as well as
disease in humans (Spickler et al., 2008). Both low-
pathogenicity avian influenza viruses (LPAIV) and high-
pathogenicity avian influenza viruses (HPAIV) are shed
in the excrement of infected birds, and some AIV remain
viable in water for relatively long periods of time
(Stallknecht et al., 1990a; Brown et al., 2007). In
particular, members of the order Anseriformes (i.e.
ducks, swans, geese) and Charadriiformes (i.e. shore
birds, gulls, terns) represent a significant reservoir of
influenza A viruses in nature and are often the focus of
research and surveillance (Webster et al., 1992; Olsen
et al., 2006; Munster et al., 2007). However, additional
free-ranging bird species may contribute to AIV trans-
mission and maintenance in nature (Stallknecht &
Shane, 1988).

Some bird species within the order Passeriformes are
ubiquitous and abundant throughout much of North
America and often occupy a variety of habitats that

overlap with both rural and residential areas. AIV,
including some HPAIV, have been isolated or detected
by reverse transcriptase-polymerase chain reaction (RT-
PCR) in samples originating from free-living passerines
of at least 24 species, although these detections are
relatively rare (Lipkind et al., 1979; Boudreault et al.,
1980; Hinshaw & Webster 1982; Roy et al., 1983;
Nestorowicz et al., 1987; Mase et al., 2005; Peterson
et al., 2008). Surveys in the USA, Canada, Egypt,
Hungary, and Slovakia suggest that numerous free-
ranging passerines become infected with LPAIV, and
therefore could potentially play a role in transmission
and spread (Romváry et al., 1976, in Stallknecht &
Shane, 1988; Johnson et al., 1977; Amin et al., 1980;
Boudreault et al., 1980; Al-Attar et al., 2008; Fuller
et al., 2010). Numerous passerine species, such as the
house sparrow (Passer domesticus) and European star-
ling (Sturnus vulgaris), commonly intermingle with
domestic game birds and poultry. For proper risk
assessments to be made, a better understanding of the
interface between wild and domestic birds and potential
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AIV transmission between these groups is needed (Olsen
et al., 2006). Furthermore, knowledge of shedding and
seroconversion among passerine birds is necessary to
understand the potential for passerines to transmit AIV
to domestic bird flocks and/or free-ranging birds.

The major objectives of the present study were to
delineate the potential role of passerines in LPAIV
transmission ecology based on experimental infections
with a wild-bird-origin LPAIV H3N8 strain. More
specifically, we examined susceptibility to infection,
proportions and magnitude of oropharyngeal and cloa-
cal shedding, bird-to-bird transmission, tissue tropism,
seroconversion over time and following challenge inocu-
lation, and subsequent protection provided by homo-
logous anti-AIV antibodies. A subset of samples (i.e.
swabs and tissues) was passaged in eggs to assess
infectivity.

Materials and Methods

Bird capture and husbandry. Free-ranging European starlings (hereafter,

starlings) were trapped in Moore County, Texas, USA in December 2008,

and house sparrows (hereafter, sparrows) in Larimer County, Colorado,

USA in January 2009. Both were transported by vehicle to the National

Wildlife Research Center in Fort Collins, Colorado. Following arrival,

birds were banded with numbered aluminium bands, bled via jugular

venipuncture (0.1 to 0.2 ml), swabbed (oropharyngeal and cloacal

cavities), and housed with four individuals per cage (starling cage

dimensions, 36 inches long�18 inches wide�18 inches high; sparrow

cage dimensions, 18 inches long�18 inches wide�18 inches high).

Birds were maintained in a biosafety level 2 facility on a 12-h light

cycle at 60 to 658F and ambient humidity (approximately 20 to 40%).

Starlings were fed Layena† Purina Mills† chicken feed while sparrows

were fed a dry seed mix of millet, milo and sunflower ad libitum; all

birds were provided with fresh water and sand grit. Birds underwent a

quarantine and acclimation period of approximately 2 weeks prior to

experimental inoculation. Capture, husbandry, and experimentation on

birds was performed under Institutional Animal Care and Use

Committee approval.

Virus inoculum. Birds in the present study were inoculated with LPAIV

strain A/wild bird/California/08 (H3N8), a subtype that has been

isolated from free-ranging waterfowl on multiple occasions (Stallknecht

et al., 1990b; Slemons et al., 1991; Pasick et al., 2010). The H3N8 isolate

used in the present study was isolated from a pool of five faecal samples

originating from gadwall (Anas strepera), northern pintail (Anas acuta),

and/or northern shoveler (Anas clypeata) collected on 28 October 2008

in Ventura County, California. The stock isolate was passaged once in

10-day-old specific pathogen free embryonated chicken eggs and diluted

in BA-1 medium (M199-Hank’s salts, 1% bovine serum albumin,

350 mg/l sodium bicarbonate, 100 units/ml penicillin, 100 mg/ml

streptomycin, 2.5mg/ml amphotericin B in 0.05 M Tris, pH 7.6). One

hundred microlitres of virus inoculum contained approximately 106.0

median embryo equivalent infectious dose (EID50) of LPAIV H3N8.

Virus back titration and RT-PCR confirmed that the dose was between

105.5 and 106.5 EID50.

Experimental design and bird inoculation. In total (i.e. phases one and

two), 36 starlings and 36 sparrows naı̈ve to AIV were inoculated via the

ocular, nasal, and oropharyngeal routes with H3N8 LPAIV, adminis-

tered as 15 ml into the nares, 15 ml into the eyes, and 70 ml into the

oropharyngeal cavity (100 ml total).

Phase one of the experiment consisted of LPAIV inoculation of 18

starlings and 18 sparrows; these birds were co-housed with sham-

inoculated conspecifics so that each cage housed two LPAIV-inoculated

birds and two sham-inoculated birds per cage. Sham inoculation was by

administration of allantoic fluid diluted in BA-1 medium using the same

volume and routes as with AIV inoculation described above. Orophar-

yngeal swabs were collected from all birds 1 to 14 days post inoculation

(d.p.i.). Cloacal swabs were collected daily from starlings from 1 to 14

d.p.i. and from sparrows at 1 to 8, 10, 12, and 14 d.p.i. In addition, all

birds were bled just prior to initial inoculation and on 7, 14, 21, and 28

d.p.i.

Phase two of the experiment consisted of challenge (i.e. secondary)

inoculation of birds that had been initially inoculated 28 days previously

(i.e. 18 starlings and 17 sparrows due to the death of one sparrow during

phase one), as well as initial LPAIV inoculation of previously sham-

inoculated cage mates. All birds in the latter group were confirmed

negative for LPAIV shedding and antibodies after potential exposure

via cage mates and again at the time of inoculation. The same strain,

dose (again confirmed by back titration and RT-PCR as approximately

106.0 EID50), and route of inoculation was performed for both initial

and challenge inoculations. Following challenge inoculation, orophar-

yngeal swabs were collected from 1 to 10 d.p.i., while cloacal swabs were

collected from 1 to 10 d.p.i. for starlings, and 1 to 8 and 10 d.p.i. for

sparrows. Birds were bled at 7 and 14 days post challenge and humanely

killed at the latter time point by intravenous overdose of pentobarbital

sodium and phenytoin sodium solution.

All birds undergoing initial inoculation during phase two (18 starlings

and 18 sparrows), were swabbed daily until they were killed humanely

on 3, 4, or 5 d.p.i., at which time blood was also collected. Six

individuals per species at each of these times points were killed

humanely to evaluate for the presence of viral RNA (and in select

samples, infectious AIV) in tissues, and to assess for seroconversion at

these relatively early time points.

Tissue collection and processing. For birds killed during acute infection

(3, 4, or 5 d.p.i.), the following tissues were collected and frozen to

�808C: superior part of the duodenum, distal large colon, trachea, and

left lung.

Prior to testing by RT-PCR, tissues were thawed, ground in a mixer

mill (Retsch GmbH, Haan, Germany) at 20 cycles/second for 4 min

(blocks were rotated at 2 min), and centrifuged at 10,000 x g for 3 min.

Tissue supernatants were processed using a Qiagen MagAttract Viral

RNA M48 Kit according to manufacturer’s instructions with a bead

mill (Qiagen Inc., Valencia, California, USA).

Viral gene detection. Quantitative real-time RT-PCR targeting the AIV

matrix gene (Spackman et al., 2002) was used to detect AIV in swab

samples and tissue supernatants. Inoculated birds with oropharyngeal

shedding limited to 1 d.p.i. were not considered to have shed virus via

this route because of probable residual inoculum in the oral cavity at

this early time point. All samples were assayed in duplicate and a

standard curve was calculated from three or more samples with known

quantities of virus with R2]0.99. Quantities and cycle threshold (Ct)

values were calculated and the former were used to analyse shedding

profiles. The minimum threshold for detection of AIV from swab and

tissue supernatants via RT-PCR was a mean quantity of 10.0 EID50

equivalents (corresponding to a Ct value of approximately 38).

Virus isolation. A subset of RT-PCR-positive samples with EID50

equivalent quantities ]102, including both oropharyngeal and cloacal

swabs and at least two tissue supernatants from each species, was

inoculated into embryonated chicken eggs using standard methods

(Woolcock, 2008). Prior to virus isolation testing, samples were stored

at �808C and underwent two freeze�thaw cycles. Briefly, each sample

was serially diluted 10-fold in TBTB�33T antibiotics, and 100 ml of

each dilution was inoculated into the chorioallantoic sac of five 9-day-

old specific pathogen free chicken eggs. For each assay, TBTB�33T

antibiotics were used as a negative control and H3N8 virus stock as a

positive control (five eggs each). Amnio-allantoic fluid was collected

from embryos that died between 24 and 120 h post inoculation and

tested for the presence of haemagglutinin protein. Haemagglutination

assays were performed in round-bottom, 96-well plates with amnio-

allantoic fluid serially diluted in phosphate-buffered saline and 0.5%

chicken erythrocyte solution. The Reed�Müench method was used for

calculating EID50 values (Reed & Müench, 1938).

Serology. Prior to testing, sera were frozen at �808C and thawed once,

and then heat inactivated at 568C for 30 min. A previously developed
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blocking enzyme-linked immunosorbent assay (ELISA) for antibodies

to AIV was used to detect and quantify antibodies in bird sera (Sullivan

et al., 2009). Each serum sample was run in duplicate and samples with

mean percentage inhibition ]32% were considered antibody-positive.

Data analyses. Average daily shedding for each species was calculated

using the full set of RT-PCR data (including quantities B10), and

average duration of shedding included periods of intermittent shedding

(i.e. when days with undetectable shedding were preceded and followed

by detectable shedding).

The Proc Mixed procedure (SAS Institute, Cary, North Carolina,

USA) with repeated measures was used for data analysis, and Akaike’s

information criteria (AIC) with bias correction for small sample sizes

(AICc) were used for model selection (Burnham & Anderson, 2002).

The latter method tested which sets of factors best predicted the two

dependent variables of oropharyngeal shedding and antibody responses.

Nineteen models were used to predict RT-PCR quantities of LPAIV

viral RNA in oropharyngeal swabs and to predict ELISA percentage

inhibition (representing antibody responses). Both RT-PCR quantities

and ELISA percentage inhibition (serving as the dependent variables)

were analysed as a function of three fixed variables: d.p.i., species, and

inoculation sequence (i.e. initial versus challenge). The two model sets

contained no effects models (intercept only with dependent variable

independent of all fixed variables included within the model set), single-

effects models (species, d.p.i., or inoculation sequence) and several

additive and interactive models, one of which was a fully interactive

model. Individual AIC weights were calculated for each model. Cloacal

shedding yielded very few positive data points and therefore was not

analysed.

Results

Oropharyngeal and cloacal shedding. Prior to inocula-
tion, all birds were negative for oropharyngeal and
cloacal shedding of AIV by RT-PCR. Following LPAIV
H3N8 inoculation of 72 birds (36 sparrows and 36
starlings, including both phases one and two), more
starlings (35/36; 97.2%) than sparrows (19/36; 52.8%)
shed via the oropharyngeal cavity as determined by RT-
PCR (Figure 1). Oropharyngeal shedding occurred
between 1 and 5 d.p.i. in both species, and the average
duration of shedding after initial inoculation of starlings
was 3.3 days (n�36, 95% confidence interval [CI] �
3.18, 3.82), while sparrows shed for an average of
1.5 days (n�36, 95% CI�0.95, 2.05). Few individuals
had detectable cloacal shedding by quantitative RT-
PCR; 3/36 (8.3%) individuals of each species had

positive cloacal swabs (quantities 11.2 to 152.0) between
1 and 5 d.p.i., and duration of cloacal shedding was
usually 1 day, although one sparrow shed for 3
consecutive days. Influenza A virus was isolated from
oropharyngeal swabs from sparrows and starlings (2 to 4
d.p.i.) and a cloacal swab from a sparrow (5 d.p.i.; Table
1). RT-PCR-positive swab samples from which LPAIV
isolation was unsuccessful included an oropharyngeal
swab from a sparrow (2 d.p.i.) and a cloacal swab from a
starling (3 d.p.i.).

Following challenge inoculation of 17 sparrows and 18
starlings 28 days post initial inoculation, 4/17 (23.5%)
sparrows and 6/18 (33.3%) starlings had detectable
oropharyngeal shedding. Oropharyngeal shedding per-
centages were lower following challenge inoculation
versus initial inoculation. Similarly, oropharyngeal and
cloacal shedding duration and quantities were lower
following challenge inoculation versus initial inocula-
tion. As for initial inoculation, cloacal shedding after
challenge inoculation was rare with only 1/17 (5.9%)
sparrows and 1/18 (5.6%) starlings with detectable
shedding, both on 3 d.p.i. (RT-PCR quantities of 11.5
and 17, respectively; Table 1). The average duration of
oropharyngeal shedding after challenge inoculation was
0.8 days for sparrows (n�17, 95% CI�0.08, 1.45) and 1
day for starlings (n�18, 95% CI�0.09, 1.91).

Quantities of LPAIV shed via the oropharyngeal
cavity were influenced by species, d.p.i., and inoculation
sequence (i.e. initial versus challenge). Based on AICc,
the model that best fit the data was fully interactive,
including all of the effects of the fixed variables (species,
d.p.i., and inoculation sequence). This model was heavily
weighted (Akaike weight�1.000) and indicated that
species, d.p.i., and inoculation sequence affected RT-
PCR quantities of oropharyngeal shedding (Table 2).

Clinical observations. No clinical illness was observed
during the study, although one inoculated sparrow died
on 14 d.p.i. following blood collection.

Cage-mate transmission. No cage-mate transmission was
detected in either species, as all non-inoculated cage
mates remained seronegative and were negative for
oropharyngeal and cloacal shedding throughout the
28 days that they were co-housed with inoculated
conspecifics (i.e. for �3 weeks beyond detectable shed-
ding in the inoculated cage mates).

Tissue tropism. For birds killed between 3 and 5 d.p.i., 8/
18 (44.4%) of the sparrows and of the starlings had at
least one RT-PCR-positive tissue (trachea, lung, small
intestine, and/or large intestine; Table 3). Trachea and
duodenum were the most commonly positive tissues
among sparrows (4/18; 22.2%) and starlings (5/18;
27.8%), respectively. Influenza A virus was isolated
from homogenized trachea, lung, and large intestine
collected between 3 and 5 d.p.i. from starlings and
sparrows. Samples that were RT-PCR-positive but from
which LPAIV isolation failed included sparrow duode-
num (3 d.p.i.) and starling large intestine (4 d.p.i.),
trachea (5 d.p.i.), and duodenum (5 d.p.i.).

Serology. Upon capture, all birds were negative for
antibodies to internal proteins of AIV. Following initial
inoculation, early antibody responses (i.e. 3 to 5 d.p.i.)

Figure 1. Mean quantities of oropharyngeal LPAIV shedding in

house sparrows and European starlings following experimental

inoculation (error bars represent 95% confidence intervals).
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were detected in 5/18 (27.8%) sparrows and 4/18 (22.2%)

starlings. By 7 d.p.i., 14/18 (77.8%) each of sparrows and

starlings had evidence of antibodies to LPAIV H3N8.

These percentages subsequently increased, and by 28

d.p.i. all sparrows (17/17; 100%) and all but one starling

(17/18; 94.4%) were antibody-positive (Figure 2). The

single starling that failed to shed or seroconvert follow-

ing initial inoculation subsequently shed and serocon-

verted following challenge inoculation, so the initial

inoculation attempt of this bird was probably unsuccess-

ful.
On the day of challenge inoculation (i.e. 28 days

following initial inoculation), 17/17 sparrows and 17/18

starlings were LPAIV seropositive with percentage

inhibition values from 37 to 99% for starlings, and

from 33 to 88% for sparrows. By 7 days post-challenge,

11/18 (61.1%) starlings had ]10% increase in percen-

tage inhibition (range of increase 1 to 31%; average

increase 12%; none decreased). Likewise, the majority of

sparrows (12/17; 70.6%) had ]10% increase in percen-
tage inhibition by 7 days post-challenge (range 2 to 48%;
average 22%, excluding one individual with a 12%
decrease). Percentage inhibition values were similar on
7 and 14 days post challenge in both starlings and
sparrows (Figure 3).

Based on AICc, a fully interactive model that included
all of the effects of the fixed variables (i.e. species, d.p.i.
and inoculation sequence) best fit the data. This model
was heavily weighted (Akaike weight � 1.000) and
indicated that species, d.p.i. and inoculation sequence
influenced antibody responses (Table 4).

Discussion

The complex ecology of AIV has direct impacts on both
human and animal health, and these impacts are
dynamic and often unpredictable. Therefore, it is neces-
sary to evaluate a wide spectrum of species for potential

Table 2. Model set testing the relationship between RT-PCR quantities representing LPAIV oropharyngeal shedding as the dependent

variable and d.p.i., species and inoculation sequence as fixed variables in house sparrows and European starlings experimentally inoculated

with LPAIV.

Oropharygneal shedding

Model K �2log L AICc ^AICc AIC weight

Intercept only 3 14,436.9 14,442.9 415.52 0.000

SP 4 14,420.2 14,428.2 400.84 0.000

d.p.i. 16 14,215.8 14,248.3 220.94 0.000

Inoc (initial or challenge) 4 14,423.7 14,431.7 404.34 0.000

SP�d.p.i. 17 14,195.4 14,230.0 202.61 0.000

SP*d.p.i. 30 14,051.4 14,113.3 85.88 0.000

SP�Inoc 5 14,405.3 14,415.4 387.96 0.000

SP*Inoc 6 14,397.1 14,409.2 381.78 0.000

d.p.i.�Inoc 17 14,202.5 14,237.1 209.71 0.000

d.p.i.*Inoc 27 14,155.7 14,211.2 183.82 0.000

SP�d.p.i.�Inoc 18 14,181.3 14,218.0 190.58 0.000

SP�d.p.i.�Inoc�SP*d.p.i. 31 14,035.2 14,099.2 71.81 0.000

SP�d.p.i.�Inoc�SP*Inoc 19 14,171.2 14,210.0 182.56 0.000

SP�d.p.i.�Inoc�d.p.i.*Inoc 28 14,134.0 14,191.6 164.24 0.000

SP�d.p.i.�Inoc�SP*d.p.i.�SP*Inoc 31 14,025.5 14,089.5 62.11 0.000

SP�d.p.i.�Inoc�SP*d.p.i.�d.p.i.*Inoc 41 13,977.5 14,063.0 35.62 0.000

SP�d.p.i.�Inoc�SP*Inoc�d.p.i.*Inoc 29 14,123.4 14,183.2 155.76 0.000

SP�d.p.i.�Inoc�SP*d.p.i.�SP*Inoc�d.p.i.*Inoc 42 13,967.2 14,054.9 27.50 0.000

SP�d.p.i.�Inoc�SP*d.p.i.�SP*Inoc�d.p.i.*Inoc

SP*d.p.i.*Inoc

52 13,917.7 14,027.4 0.00 1.000

K, number of parameters; AICc, Akaike’s information criteria with small sample size correction factor; ^AICc, standardized AICc

values (most supported model � 0); AIC weight, weight of evidence for each model (most supported model in bold); SP, species; Inoc,

inoculation sequence.

Table 1. Oropharyngeal and cloacal shedding determined by RT-PCR in two

passerine species following initial and challenge inoculation with LPAIV.

Initial inoculation Post-challenge inoculation

Species

Swab

sample

Proportion positive

(%)

Mean duration of shedding d.p.i.

(range)

Proportion positive

(%)

Mean duration of shedding d.p.i.

(range)

HOSP OROa 19/36 (52.8%) 1.50 (1�4) 4/17 (23.5%) 0.76 (1�4)

EUST ORO 35/36 (97.2%) 3.31 (1�5) 6/18 (33.3%) 1.00 (1�4)

HOSP CLO 3/36 (8.3%) 0.14 (1�5) 1/17 (5.9%) 0.06 (3)

EUST CLO 3/36 (8.3%) 0.08 (1�5) 1/18 (5.6%) 0.06 (3)

HOSP, house sparrow; EUST, European starling; ORO, oropharyngeal; CLO, cloacal. Titres are expressed as EID50/ml swab sample.
aVirus isolation-positive samples from sparrows included oropharyngeal swabs from three individuals on 3 to 4 d.p.i. (102.2 to 103.1

EID50/ml) and a cloacal swab on 5 d.p.i. (104.3 EID50/ml); and from starlings included oropharyngeal swabs from six individuals on 2

to 4 d.p.i. (102.2 to 103.4 EID50/ml).
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involvement in virus transmission and maintenance, as

well as for susceptibility to disease. Further, it is

important to evaluate the consequences of infection

with AIV strains originating from both poultry and wild

birds. The present study examines whether free-ranging

passerines are susceptible to infection with a wild-bird-

origin LPAIV, and their potential subsequent role in

dissemination of these viruses to other free-ranging or

domestic birds, including poultry. While the majority of

LPAIV isolates from free-ranging birds have originated

from waterfowl (Stallknecht & Shane, 1988), both

LPAIV and HPAIV have been isolated from passerine

birds throughout a wide geographic area encompassing

portions of Europe, Australia, North America, Africa,

Asia, and the Middle East. Examples of these isolations

have included swabs collected from house sparrows in

Hungary and European starlings in Israel and Australia

(Romváry et al., 1976, in Stallknecht & Shane, 1988;

Lipkind et al., 1979; Amin et al., 1980; Boudreault et al.,

1980; Boudreault & LeComte, 1981; Cross, 1986;
Nestorowicz et al., 1987; Kwon et al., 2005; Gronesova

et al., 2008; Desvaux et al., 2009). In addition, cloacal

swabs collected from 22 passerine species throughout the
USA from 2005 to 2008 were AIV-positive by RT-PCR,
with an approximate prevalence of 1% among passerines
(Fuller et al., 2010).

European starlings and house sparrows are well
established across North America, with starling numbers
estimated at �200 million (Feare, 1984) and sparrows at
approximately 150 million (Wing, 1943). These perido-
mestic, free-living passerines have frequent contact with
other wild birds as well as domestic poultry and game
birds (Stallknecht & Shane, 1988), thereby creating
opportunities for pathogen transmission. Shared food,
substrate, and water sources probably involve cross-
species virus exposure originating from faeces, orophar-
yngeal secretions and possibly aerosolized droplets.
Epidemiological studies have implicated poultry in the
transmission of LPAIV to free-ranging birds, and vice
versa (Cross, 1986; Nestorowicz et al., 1987). Repeated
LPAIV infections of multiple host species as well as
same-host co-infections that may result from this close
relationship between domestic and free-ranging birds
could increase the exchange of viral genetic material,
and therefore the likelihood of increasingly virulent
reassortant viruses (Campitelli et al., 2008; Moon
et al., 2010).

The susceptibility of both house sparrows and Eur-
opean starlings to intranasal, oropharyngeal and ocular
inoculation with wild-bird-origin LPAIV in the present
study suggests that these birds could become infected
through contact with actively shedding waterfowl. These
results also suggest that both species may be capable of
transmitting LPAIV through respiratory and orophar-
yngeal secretions, although no intraspecific bird-to-bird
transmission occurred despite sustained direct contact
between naı̈ve birds and actively shedding cage mates.
Starlings may have a greater potential to transmit
LPAIV than sparrows based on a relatively higher
frequency of individuals with oropharyngeal shedding
and greater quantities of shedding of longer duration
(Figure 1). Waterborne AIV transmission has been
demonstrated via controlled studies in which house
sparrows became infected with HPAIV H5N1 after

Figure 2. Timing and proportion of seroconversion in house

sparrows and European starlings following experimental inocula-

tion with LPAIV.

Figure 3. Seroconversion over time and serological responses to

challenge in house sparrows and European starlings following

experimental inoculation with LPAIV (error bars represent 95%

confidence intervals; dashed line at 28 days post-initial inocula-

tion depicts timing of challenge inoculation).

Table 3. Tissue tropism determined by RT-PCR in two

passerine species following primary inoculation with LPAIV.

Species d.p.i.a Tracheab Lung

Small

intestine

Large

intestine

HOSPc 3 1 (16.7%) 1 (16.7%) 1 (16.7%) 2 (33.3%)

HOSP 4 2 (33.3%) 1 (16.7%) 0 (0%) 1 (16.7%)

HOSP 5 1 (16.7%) 0 (0%) 1 (16.7%) 0 (0%)

EUST 3 0 (0%) 0 (0%) 1 (16.7%) 1 (16.7%)

EUST 4 0 (0%) 0 (0%) 2 (33.3%) 2 (33.3%)

EUSTd 5 1 (16.7%) 1 (16.7%) 2 (33.3%) 0 (0%)

HOSP, house sparrow; EUST, European starling.
aSix birds of each species were tested at each time point.
bVirus isolation-positive samples from HOSP included the

trachea (109.0 EID50/g) and large intestine (105.1 EID50/g) at 3

d.p.i. and the lung at 4 d.p.i. (104.7 EID50/g), as well as lung

from EUST at 5 d.p.i. (105.0 EID50/g). Titres are expressed as

EID50/g tissue.
cPositive trachea and large intestine were from the same

individual sparrow.
dPositive trachea and lung were from the same individual

starling.
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being provided with water from cages of acutely infected

chickens (Forrest et al., 2010). In contrast to orophar-

yngeal shedding, cloacal shedding of LPAIV H3N8

among sparrows and starlings was minimal. This could

be due to differing pathogenesis in passerines versus

ducks or chickens, in which cloacal shedding appears to

be more common than oropharyngeal shedding (Lu &

Castro, 2004; Mundt et al., 2009; Jourdain et al., 2010).

Additionally, the proportion, magnitude, and duration

of shedding in passerines was much less than has been

observed in ducks, in which cloacal or faecal shedding

has been detected for up to 21 or 22 d.p.i. (Alexander

et al., 1978; Kida et al., 1980).
Serologic responses following LPAIV infection vary by

host species and depend upon the origin, dose and

subtype of the infecting virus (Kida et al., 1980; Lu &

Castro, 2004; Mundt et al., 2009); also, detection of

antibodies varies by assay (Spackman et al., 2009;

Sullivan et al., 2009). Antibody detection following

AIV experimental inoculation of chickens, ducks, and

passerines has been variable, sometimes with a transitory

or lack of detectable humoral immune response (van der

Goot et al., 2003; Al-Attar et al., 2008; Fereidouni et al.,

2010). For example, seroprevalence among mallards

(Anas platyrhynchos) that had been experimentally

inoculated with LPAIV decreased from approximately

90 to 65% between 14 and 21 d.p.i., as determined by a

commercially available ELISA (Spackman et al. 2009).

In contrast, a recent study indicated that naturally-

acquired antibodies to LPAIV persisted in mallards for

up to 9 to 12 months (Fereidouni et al., 2010).

Antibodies to AIV have been detected in free-ranging

passerines, including house sparrows in the vicinity of an

AIV outbreak in poultry (Nestorowicz et al., 1987). In

the present study, nearly all birds seroconverted within

7 days of inoculation and antibody levels remained

relatively constant over 4 weeks. These results suggest

that passerines could be useful in serosurveillance for
recent AIV activity.

The extent of protective LPAIV immunity in birds
may alter the duration and intensity of seasonal trans-
mission. Additional factors that may affect varying
susceptibilities and subsequent responses to LPAIV
infection include age and taxonomic differences (Costa
et al., 2010). Evidence of protective immunity in water-
fowl has been documented through observations in wild
birds, as well as through controlled studies. In Sweden,
multiple captures of migrating mallards revealed de-
creasing LPAIV shedding duration throughout the
migration season, suggesting protective, possibly transi-
ent, immunity (Latorre-Margalef et al., 2009). In
Germany, approximately 350 swans, geese and other
birds suffered from HPAIV H5N1-associated morbidity
and mortality while several hundred thousand coexisting
conspecifics appeared healthy, supporting potential
cross-protective immunity from previous AIV infection
in the latter (Globig et al., 2009). Indeed, respiratory and
intestinal shedding was reduced in mallards with pre-
existing homosubtypic or heterosubtypic immunity to
LPAIV following challenge with HPAIV H5N1 or
LPAIV subtypes (Fereidouni et al., 2009; Jourdain
et al., 2010). These studies demonstrated short-term
immune protection against re-infection in mallards (e.g.
3 to 7 weeks) that could lead to temporary herd
immunity, thereby dampening intra-seasonal transmis-
sion. Similarly, the present study demonstrated homo-
subtypic immune protection of several passerines,
evidenced by reduced quantities and duration of shed-
ding as well as increased antibody levels 1 to 2 weeks
after challenge. Long-term (i.e. inter-seasonal or inter-
annual) LPAIV immunity among birds has been less well
documented, although one study indicated that immu-
nity may be relatively short lived (546 days) in Pekin
ducks (Anas platyrhynchos domesticus; Kida et al., 1980).
Along with dampening transmission, cross-protective

Table 4. Model set testing the relationship between percentage inhibition representing anti-LPAIV antibodies as the dependent variable,

and species and inoculation sequence as fixed variables in house sparrows and European starlings experimentally inoculated with LPAIV.

Model K �2log L AICc ^AICc AIC weight

Intercept only 3 2298.8 2304.9 301.17 0.000

SP 4 2293.5 2301.7 297.93 0.000

d.p.i. 9 2209.2 2228.0 224.22 0.000

Inoc (initial or challenge) 4 2146.8 2155.0 151.23 0.000

SP�d.p.i. 10 2201.5 2222.4 218.69 0.000

SP*d.p.i. 15 2188.9 2221.0 217.24 0.000

SP�Inoc 5 2146.3 2156.5 152.81 0.000

SP*Inoc 6 2136.7 2149.0 145.32 0.000

d.p.i.�Inoc 10 2030.3 2051.2 47.49 0.000

d.p.i.*Inoc 11 2016.7 2039.8 36.09 0.000

SP�d.p.i.�Inoc 11 2024.5 2047.6 43.89 0.000

SP�d.p.i.�Inoc�SP*d.p.i. 16 1999.0 2033.4 29.62 0.000

SP�d.p.i.�Inoc�SP*Inoc 12 2011.4 2036.7 32.99 0.000

SP�d.p.i.�Inoc�d.p.i.*Inoc 12 2011.0 2036.3 32.59 0.000

SP�d.p.i.�Inoc�SP*d.p.i.�SP*Inoc 17 1990.3 2027.0 23.23 0.000

SP�d.p.i.�Inoc�SP*d.p.i.�d.p.i.*Inoc 17 1983.7 2020.4 16.63 0.000

SP�d.p.i.�Inoc�SP*Inoc�d.p.i.*Inoc 13 1996.7 2024.3 20.52 0.000

SP�d.p.i.�Inoc�SP*d.p.i.�SP*Inoc�d.p.i.*Inoc 18 1974.2 2013.2 9.45 0.000

SP�d.p.i.�Inoc�SP*d.p.i.�SP*Inoc�d.p.i.*Inoc

SP*d.p.i.*Inoc

19 1962.4 2003.7 0.00 1.000

K, number of parameters; AICc, Akaike’s information criteria with small sample size correction factor; ^AICc, standardized AICc

values (most supported model�0); AIC weight, weight of evidence for each model (most supported model in bold); SP, species; Inoc,

inoculation sequence.
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immunity in birds may decrease the likelihood of within-
host virus recombination of multiple subtypes, thereby
diminishing the potential for virulence shifts.

Tissue tropism of LPAIV, which also appears to vary
taxonomically among birds, provides insight into patho-
genesis and may have implications for environmental
transmission. Despite possible loss of sensitivity due to
multiple freeze�thaw cycles prior to testing in the present
study, AIV-positive swabs (by RT-PCR and/or virus
isolation) collected from starlings and sparrows from 1
to 5 d.p.i. and respiratory and gastrointestinal tissues
from 3 to 5 d.p.i. support infection of multiple systems.
Ellström et al. (2009) demonstrated evidence for a2,6-
linked sialic acids on receptors in the tracheal epithelium
of nine avian species (including species within the orders
Anseriformes, Galliformes, Charadriiformes, and Co-
lumbiformes), despite AIV isolates from birds most
often preferentially binding to a2,3-linked sialic acids
in the intestinal epithelium. However, the study did not
include passerines. In past studies, virus was recovered
from respiratory and gastrointestinal tissues of LPAIV
experimentally inoculated passerines (including spar-
rows) and mallards from 2 to 7 d.p.i. (Roy et al., 1983;
Tang et al., 2009), and infectious HPAIV (H7N7) was
detected in both respiratory and gastrointestinal
tissues of experimentally inoculated starlings and
sparrows from 2 to 3 d.p.i. (Nestorowicz et al., 1987).
While a cloacal swab and large intestine tissue from two
house sparrows were positive for infectious AIV in the
present study, oropharyngeal swabs and respiratory
tissues were more commonly positive in both sparrows
and starlings, suggesting that the respiratory system may
be more predominantly involved in LPAIV infection
than the gastrointestinal system in these species. Because
ingestion of infected bird carcasses or contaminated
faeces by chickens seems a more likely transmission
mechanism than inhalation of infectious respiratory
droplets, the relatively low levels of shedding and virus
in tissues among sparrows and starlings in the present
study suggest that sparrow-to-chicken LPAIV transmis-
sion may be a relatively unlikely event.

In conclusion, the results from the present study do
not strongly support the involvement of two common
and abundant passerine species in LPAIV maintenance
and transmission to captive or wild birds, although the
demonstrated susceptibility to infection and subsequent
oropharyngeal shedding of infectious virus cannot rule
out their involvement. While swabs and tissues from
passerine birds may be less useful for surveillance as
compared with well-recognized reservoirs, such as water-
fowl (Stallknecht & Shane, 1988), serology may provide
clues to LPAIV epidemiology, especially in passerines
within close proximity to captive poultry and game bird
facilities. Homologous and heterologous immunity to
AIV in birds could be an important determinant of
seasonal transmission intensity, and is also pertinent
where numerous HPAIV and LPAIV strains co-circulate.
Future experimental infection studies of passerines with
LPAIV, including strains of poultry-origin and poultry-
adapted viruses, would further expand the present
knowledge on their role in AIV ecology, while passerines
in nature should be monitored to better understand their
involvement in natural transmission dynamics and
potential contribution to genetic recombination events
(Roy et al., 1983).
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